

of compounds 2e and 2e isolated in the solid state by hydrochloric acid.

No release of H_2 (~0.4 mL) during interaction of 1a, 1c, and 1f with Fe was observed volumetrically, probably due to dissolution of H_2 in the metal.

The electronic absorption spectra of solutions of **2a,c,e,f** in the starting thiols after the mechanochemical reaction (Fig. 1) were recorded on a Specord M40 spectrophotometer in sealed 0.5-cm cells.

After the mechanochemical interaction with Fe, sulfides Bu₂S and Ph₂S and disulfides Pr₂S₂, Bu₂S₂, and Ph₂S₂ gain no color characteristic of IDT, which contradicts the assumption^{2,9,10} about their formation in the reaction with metallic Fe. According to our data, all organic sulfides and disulfides studied form only FeS during the mechanochemical interaction with Fe.

References

- 1. E. S. Forbes and A. J. D. Reid, ASLE Trans., 1973, 16, 50.
- L. A. Hamilton and W. W. Woods, Ind. Eng. Chem., 1950, 42, 513.
- 3. P. Claesson, J. Prakt. Chem., [2] 1877, 15, 193.
- 4. W. Manchot and H. Gall, Chem. Ber., 1927, 60, 2318.
- B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 3523.
- K. S. Hagen, J. M. Berg, and R. H. Holm, *Inorg. Chim. Acta*, 1980, 45, L17.
- K. S. Hagen, J. G. Reynolds, and R. H. Holm, J. Am. Chem Soc., 1981, 103, 4054.
- H. Strasdeit, B. Krebs, and G. Henkel, *Inorg. Chem.*, 1984.
 1816.
- 9. W. Davey, Sci. Lubr., 1955, 7, 23.
- K. G. Allum and E. S. Forbes, J. Inst. Petrol., 1967, 53, 173.

Received June 1, 1998; in revised form July 3, 1998

Synthesis of vinyloxy-NNO-azoxymethane

I. N. Zyuzin* and G. N. Nechiporenko

Institute for Chemical Physics Research, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (096) 515 3588. E-mail: zyuzin@icp.ac.ru

Previously unknown vinyloxy-NNO-azoxymethane (1), the first alkoxy-NNO-azoxyalkane (AAZA) with the double C=C bond at the oxygen atom, was synthesized by the dehydrohalogenation of AAZA 2 and 3 1 under phase transfer catalysis conditions.

Me
$$\stackrel{+}{N=N}$$
 $\stackrel{+}{O}$ $\stackrel{NaOH/H_2O}{N=N}$ $\stackrel{Me}{PhCH_2NEt_3CI/CH_2CI_2}$ $\stackrel{+}{O}$ $\stackrel{+}{N=N}$ $\stackrel{+}{O}$ $\stackrel{+}{C}$ $\stackrel{+}{$

Four AAZA with the double C=C bond at the N atom $(4-7)^{2,3}$ and two triazenes 8^4 and 9^5 close in structure to 1 are described in the literature.

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2389-2391, November, 1998.

To monitor the reaction course, compounds 1 and 2 were determined quantitatively by GLC using an LKhM-8MD instrument (columns 15% Carbowax-20M on Chromaton N-AW DMCS, 0.25—0.315 mm, 3 m × 3 mm, N₂ as the carrier gas, 30 mL min⁻¹, temperature of the columns was 140 °C for 1 and 180 °C for 2, temperature of the evaporator was

for 1 and 180 °C for 2, temperature of the evaporator was 200 °C). Methoxy-NNO-azoxy-ethene (10)* (a structural isomer of olefin 1) was used as the internal standard.

The dehydrohalogenation of chloride 2 results in the formation of olefin 1 in a low yield (5% with Et₄NBr as the catalyst and 25% with PhCH₂NEt₃Cl with an almost complete conversion of 2). Compound 1 is formed within 2 days in 75% yield (per the reacted starting compound) from the more reactive bromide 3 with PhCH₂NEt₃Cl, and conversion of 3 reaches 69%. Attempts to bring the reaction to the complete consumption of compound 3 resulted in a sharp increase in the amount of by-products with retention times close to that of compound 1.

Compound 1 is a colorless liquid with a strong odor; it decolorizes rapidly a solution of Br_2 in CCl_4 . The greater retention time of 1 as compared to that of 10 during the GLC analysis on the polar liquid phase (7.1 and 6.3 min, respectively) indicates that compound 1 is more polar than 10. The shift of the band of the $\pi-\pi^*$ -transition in the UV spectrum of 1 with respect to that of allyloxy-NNO-azoxymethane⁶ to the long-wave region (248 and 234 nm, respectively) indicates $\pi-\pi$ -conjugation between the N_2O_2 group¹ and C=C bond.

Vinyloxy-NNO-azoxymethane (1). A 47% solution of NaOH (75 g, 0.88 mol) was added to a solution of 3 (16.1 g, 0.088 mol) and PhCH₂NEt₃Cl (2.0 g, 0.0088 mol) in CH₂Cl₂ (75 mL). The mixture was stirred at 20 °C for 48 h, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined extract was washed with a 10% solution of NaHCO₃ and dried with Na₂SO₄. After the solvent was distilled off, the residue was fractionated *in vacuo*. The yield of 1 was 4.13 g (46% of the theoretical yield), b.p. 66.5—66.8 °C (7 Torr), n_D^{20} 1.4791. IR, v/cm^{-1} : 3060, 3030, 2975, 2945, 1635 (C=C), 1510 (N₂O₂), 1420 (N₂O₂), 1315 (N₂O₂), 1155, 1130, 1090, 1005, 945, 855, 635. UV (H₂O), $λ_{nim}$ (ε): $λ_{min}$ 221 (2570), $λ_{max}$ 248 (6980). ¹H NMR (200 MHz, 50% solution in CD₃CN), δ: 3.95 (s, 3 H, CH₃); 4.45 (d.d, 1 H, H_b, J_{ab} = 6.6 Hz, J_{bc} = 2.4 Hz); 4.83 (d.d, 1 H, H_c, J_{ac} = 14.1 Hz); 6.95 (d.d, 1 H, H_a). Unreacted starting compound 3 with b.p. 88—93 °C (~1 Torr) was isolated in 39% yield (6.28 g) by distillation of the bottoms.

References

- N. Zyuzin, G. N. Nechiporenko, N. I. Golovina, R. F. Trofimova, and M. V. Loginova, Izv. Akad. Nauk, Ser. Khim., 1997, 1486 [Russ. Chem. Bull., 1997, 46, 1421 (Engl. Transl.)].
- 2. R. B. Woodward and C. Wintner, Tetrahedron Lett., 1969, 32, 2689.
- N. Zyuzin, Izv. Akad. Nauk, Ser. Khim., 1998, 1263 [Russ. Chem. Bull., 1998, 47, 1231 (Engl. Transl.)].
- 4. J. E. Saavedra, T. M. Dumans, J. L. Flippen-Anderson, and L. K. Keefer, J. Org. Chem., 1992, 57, 6134.
- J. E. Saavedra, T. R. Billiar, D. L. Williams, Y.-M. Kim,
 S. C. Watkins, and L. K. Keefer, J. Med. Chem., 1997, 40, 1947.
- N. Zyuzin, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 2626
 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 2433
 (Engl. Transl.)].

Received June 3, 1998; in revised form July 3, 1998

^{*} Synthesis of compound 10 will be described later.